Some Control Aspects of Single-Phase Power Converters with An Active Pulsating Power Buffer

YUAN Huawei Research Fellow Nanyang Technological University

Sep. 20, 2022

- Background of Single-Phase Converters with an APPB*
- Review of Existing Control Methods
- Feedback-Linearization-Based APD* Control
- Lyapunov-Based APD Control
- Sensor Count Reduction Using Algebraic Observers
- Sensor Count Reduction with Simplified Algebraic Observers
- Conclusions

(1) APPB: active pulsating power buffer; (2) APD: automatic power decoupling

Sensor Reduction Simplified observer

Conclusions

Single-Phase Power Converters

Review

Function

AC-DC or DC-AC power conversion

Low power applications

- Power adaptor;
- LED driver;
- etc.

Medium power applications

- Solar micro-inverter;
- Electric vehicle charger;

Review FLB-APD Control

LB-APD Control

Sensor Reduction Simplified Conclusions

Power Imbalance Issue and Conventional Solution

Limitations of Passive PPB Solution

- Big volume^[1];
- Electrolytic capacitors (E-caps) with a short lifetime^[2].

AC-port voltage/current

DC-port voltage/current

[2] L. Han, and N. Narendran, "An accelerated test method for predicting the useful life of an LED driver," *IEEE Trans. Power Electron.*, 26(8), pp. 2249–2257, Aug. 2011.

 ^[1] R. Wang, F. Wang, D. Boroyevich, and P. Ning, "A high power density single phase PWM rectifier with active ripple energy storage," *in Proc. IEEE APEC*, Palm Springs, CA, 2010, pp. 1378–1383.
 [2] L. Han, and N. Nerendren, "An accelerated test method for predicting the useful life of an LED driven," *IEEE Trans. Proc. Plastren.* 20(9), pp. 2240, 2257, Aug. 2011.

Sensor Reduction

Simplified observer

Conclusions

Single-Phase Converter with an APPB

APPB Solution

- A 3rd port for double-line-frequency power buffering;
- Larger allowable voltage fluctuation;

Review

- Largely reduce capacitance requirement;
- E-cap-free design.

Advantages of APPB Solution

- Improved power density^{[3],[4]};
- Improved reliability^[5].

Converter with an APPB

^[3] D. Bortis, D. Neumayr, and J. W. Kolar, " $\eta\rho$ -Pareto optimization and comparative evaluation of inverter concepts considered for the GOOGLE Little Box Challenge," *IEEE 17th COMPEL*, Trondheim, 2016, pp. 1–5.

^[4] Y. Lei et al., "A 2-kW single-phase seven-level flying capacitor multilevel inverter with an active energy buffer," *IEEE Trans. Power Electron.*, 32(11), pp. 8570–8581, Nov. 2017.
[5] P. T. Krein, and R. S. Balog, "Cost-effective hundred-year life for single-phase inverters and rectifiers in solar and LED lighting applications based on minimum capacitance 3 requirements and a ripple power port," *in Proc. IEEE APEC*, Washington, DC, 2009, pp. 620–625.

- Background of Single-Phase Converters with an APPB
- Review of Existing Control Methods
- Feedback-Linearization-Based APD Control
- Lyapunov-Based APD Control
- Sensor Count Reduction Using Algebraic Observers
- Sensor Count Reduction with Simplified Algebraic Observers
- Conclusions

According to APPB Reference Generation

FLB-APD

Control

Open-Loop Control^{[6][7]}

Review

Background

• Approach 1 - directly calculate the APPB reference

$$\frac{d}{dt}\left(\frac{1}{2}C_{b}\left(v_{b}^{R}\right)^{2}\right) = p_{ac} - p_{dc} = \frac{V_{ac}I_{ac}}{2}\cos(2\omega t - \varphi)$$

• Approach 2 - APPB is controlled as an active power filter

KCL:
$$i_{\text{load}} = i_{\text{o}} + i_{\text{PPB}} = i_{\text{o,dc}} + i_{\text{o,ac}} + i_{\text{PPB}}$$

If $i_{\text{PPB}}^{\text{R}} = -i_{\text{o,ac}}$, then $i_{\text{load}} = i_{\text{o,dc}}$.

Closed-Loop Control^{[8][9]}

Sensor

Reduction

• APPB reference is obtained from the output

Simplified

observer

Conclusions

$$i_{\text{PPB}}^{\text{R}} = G_r(s)i_{\text{load,ac}}, \text{ or } v_{\text{b}}^{\text{R}} = G_r(s)v_{\text{dc,ac}}.$$

[6] S. Dusmez, and A. Khaligh, "Generalized technique of compensating low-frequency component of load current with a parallel bidirectional DC/DC converter," *IEEE Trans. Power Electron.*, vol. 29, no. 11, pp. 5892–5904, Nov. 2014.

LB-APD

Control

[7] X. Huang, X. Ruan, F. Du, F. Liu, and L. Zhang, "A pulsed power supply adopting active capacitor converter for low-voltage and low-frequency pulsed loads," *IEEE Trans. Power Electron.*, vol. 33, no. 11, pp. 9219–9230, Nov. 2018.

[8] S. Li, W. Qi, S. C. Tan, and S. Y. R. Hui, "A single-stage two-switch PFC rectifier with wide output voltage range and automatic AC ripple power decoupling," *IEEE Trans. Power Electron.*, vol. 32, no. 9, pp. 6971–6982, Sept. 2017.

[9] W. Yao, X. Wang, P. C. Loh, X. Zhang, and F. Blaabjerg, "Improved power decoupling scheme for a single-phase grid-connected differential inverter with realistic mismatch in 4 storage capacitances," *IEEE Trans. Power Electron.*, vol. 32, no. 1, pp. 186–199, Jan. 2017.

Control

Simplified

observer

According to Control Techniques

Linear Control^{[10][11]}

- Examples: PI control, resonance control, repetitive control, type III compensator, etc.
- **Limitations:** 1. Limited transient performance; 2. Stability may not be guaranteed during transient operation.

Nonlinear Control^{[12][13]}

- Examples: Bang-bang control, model predictive control, partial feedback linearization, etc.
- **Limitations:** 1. Topology dependent; 2. There lacks a systematic design theory.

In This Tutorial

To present a systematic controller design theory for this emerging class of converter.

^[10] Y. Ohnuma, K. Orikawa, and J. I. Itoh, "A single-phase current-source PV inverter with power decoupling capability using an active buffer," IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 531-538, Jan./Feb. 2015.

^[11] W. Yao, X. Wang, P. C. Loh, X. Zhang, and F. Blaabjerg, "Improved power decoupling scheme for a single-phase grid-connected differential inverter with realistic mismatch in storage capacitances," IEEE Trans. Power Electron., vol. 32, no. 1, pp. 186–199, Jan. 2017.

^[12] S. Li, G. R. Zhu, S. C. Tan, and S. Y. Hui, "Direct AC/DC rectifier with mitigated low-frequency ripple through inductor-current waveform control," IEEE Trans. Power. Electron., vol. 30, no. 8, pp. 4336–4348, Aug. 2015.

^[13] Y. Liu, B. Ge, H. Abu-Rub, H. Sun, F. Z. Peng, and Y. Xue, "Model predictive direct power control for active power decoupled single-phase quasi-Z -source inverter," *IEEE Trans.* 5 Ind. Informat., vol. 12, no. 4, pp. 1550–1559, Aug. 2016.

- Background of Single-Phase Converters with an APPB
- Review of Existing Control Methods
- Feedback-Linearization-Based APD Control^[14]
- Lyapunov-Based APD Control
- Sensor Count Reduction Using Algebraic Observers
- Sensor Count Reduction with Simplified Algebraic Observers
- Conclusions

^[14] H. Yuan, S. Li, W. Qi, S. Tan, and S. Hui, "On nonlinear control of single-phase converters with active power decoupling function," *IEEE Trans. Power Electron.*, vol. 34, no. 6, pp. 5903–5915, June 2019.

FLB-APD Control

LB-APD Control Sensor Reduction Simplified observer

Conclusions

Controller Design Considerations

Review

Comparison of the Characteristics of the Converters

- Small signal operation
- Large dc-link inertia
- Single-input single-output controller structure

Converter with an APPB

- Large signal operation
- Small dc-link inertia
- Two-input two-output controller structure

FLB-APD Review

Control

LB-APD Control

Sensor Reduction

Simplified observer

Conclusions

Controller Design Considerations

Three Control Strategies

- A: direct control of p_{ac} and p_{b} ;
- B: direct control of p_{dc} and p_{b} ;
- C: direct control of p_{ac} and p_{dc} .

Selection of the APD Strategy

- The AC-port and DC-port references are ready to use;
- The accurate APPB reference is difficult to predict during transients.

Suggested Control Scheme

Nonlinear control + APD strategy.

Direct-power-decoupling (DPD) strategy Automatic-power-decoupling (APD) strategy

Feedback Linearization Control

Review

Advantages

- Powerful in linearizing and decoupling a nonlinear and coupled system without approximation^[15];
- Suitable for controlling the single-phase converter with an APPB.

Objectives of This Part

- To introduce a feedback-linearization-based APD (FLB-APD) control method to enhance the system performance.
- To explore some new potential of this emerging type of converter, such as reactive power compensation, harmonics compensation, and output voltage holdup.

Sensor Reduction Simplified observer

Conclusions

FLB-APD Control

General Principle

- APD strategy: $y_1 = x_{ac}$; $y_2 = x_{dc}$.
- Derive the input-output model: y = f(u, x).

Review

- Feedback linearization:
 - 1) Input transformation: $\mathbf{W}^{-1}(\mathbf{w}, \mathbf{w})$:
 - $\mathbf{v} = \mathbf{K}^{-1}(\mathbf{u}, \mathbf{x});$
 - 2) Equivalent system: $y_1 = G_1(s) \cdot v_1, y_2 = G_2(s) \cdot v_2.$
- Use simple linear control techniques to control the linearized system.

Stability of internal dynamics $(\dot{\bar{x}}_y = d_{int}(x, v))$ must be checked.

Illustration

- Structure: full-bridge rectifier + buck-type APPB (DCM^{*} operation).
- State-space-averaged model:

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x}) \cdot \mathbf{u}, \ \mathbf{x} = [i_{ac}, v_{dc}, v_b]^{\mathrm{T}}, \ \mathbf{u} = [m_{AB}, d_{\mathrm{C}}]^{\mathrm{T}} \\ \mathbf{y} = \mathbf{h}(\mathbf{x}) = [i_{ac}, v_{dc}]^{\mathrm{T}}, \ (\overline{\mathbf{x}}_{\mathbf{y}} = \{v_b\}) \end{cases}$$

• The FLB-APD control law:

$$m_{AB} = \left(v_{ac} - L_{ac} \dot{i}_{ac}^{R} - \alpha_{1} L_{ac} (i_{ac}^{R} - i_{ac}) \right) / v_{dc} - \frac{1}{2} \left\{ \frac{c \left(m_{AB} i_{ac} - \alpha_{2} C_{dc} (v_{dc}^{R} - v_{dc}) - i_{load} \right)}{c (v_{dc} - v_{b}) \left(m_{AB} i_{ac} - \alpha_{2} C_{dc} (v_{dc}^{R} - v_{dc}) - i_{load} \right) / v_{b}^{2}, \text{ boost mode} \right\}$$

• Error dynamics of **y**:

 $\dot{e}_i + \alpha_i e_i = 0$ (*i* = 1, 2)

• Internal dynamics:

Bounded and stable $v_{\rm b}$

Sensor Reduction

FLB-APD Control

Illustration

• Overall control block diagram

Review

Equivalent diagram

Sensor Reduction Simplified ___observer

Conclusions

Experimental Verification

Review

Specifications

Parameters		Values
Rated power		100 W
Switching frequency		25 kHz
AC port	v _{ac}	220 V / 50 Hz
	L _{ac}	7 mH
DC port	v _{dc}	400 V
	C _{dc}	10 µF
APPB port	C _b	30 µF
	L _b	212 µH

LB-APD Control Sensor Reduction

n Simplified observer

Conclusions

Experimental Verification

Review

Steady-State Operation

AC port:

i) Unity power factor;
ii) *i*_{ac} has a low THD* of 3.57%.

DC port:

 $v_{\rm dc}$ tightly regulated at 400 V with a peak-to-peak ripple of 0.5%.

APPB port:

 $v_{\rm b}$ has a voltage swing of 40 V. ($C_{\rm b} = 30 \ \mu\text{F}$, while a conventional solution needs 400 $\mu\text{F}^{[16]}$.)

THD: total harmonic distortion.

[16] P. T. Krein, R. S. Balog, and M. Mirjafari, "Minimum energy and capacitance requirements for single-phase inverters and rectifiers using a ripple port," *IEEE Trans. Power Electron.*, 27(11), pp. 4690–4698, Nov. 2012.

FLB-APD Control

LB-APD Control Sensor Reduction Simplified observer

Conclusions

Experimental Verification

Review

Reduced APPB

- $C_{\rm b}$ reduced from 30 µF to 5.47 µF. (The theoretical limit of $C_{\rm b}$: 3.98 µF^[16]).
- $v_{\rm b}$ has a voltage swing of 300 V.
- The converter operates reliably.

^[16] P. T. Krein, R. S. Balog, and M. Mirjafari, "Minimum energy and capacitance requirements for single-phase inverters and rectifiers using a ripple port," *IEEE Trans. Power Electron.*, 27(11), pp. 4690–4698, Nov. 2012.

15

Experimental Verification

Review

Load-Disturbance Test

- **Experiment condition:** Power change $0 \text{ W} \rightarrow 100 \text{ W}$ and $100 \text{ W} \rightarrow 0 \text{ W}$.
- $v_{\rm dc}$ remains tightly regulated.
- i_{ac} enters its steady-state within three line cycles.
- The stepped imbalanced power is buffered by the APPB (see v_b).

FLB-APD Control

LB-APD Control

Sensor Reduction Simplified C

Conclusions

Experimental Verification

Review

Output-Reference-Tracking Test

Experiment condition:

Reference of v_{dc} : 400 V \rightarrow 450 V and 450 V \rightarrow 400 V.

• v_{dc} has first-order responses with a settling time of 1 ms (designed $\tau_2 = 0.25$ ms).

FLB-APD Control

LB-APD Control Sensor Reduction Simplified observer

Conclusions

Experimental Verification

Review

Output Voltage Holdup

Experiment condition:

The input of the converter is suddenly cut off.

 v_{dc} remains tightly regulated at 400 V for 10 ms after input shutdown.

(Typical holdup time is half to one line cycle^[17].)

• The energy stored in the APPB is fully utilized.

Sensor Reduction

Experimental Verification

Review

Harmonics Compensation

- **Experiment condition:** See the circuit below.
- The THD of i_g is reduced from 52.9% to 6.03%.
- $v_{\rm dc}$ remains tightly regulated.

- Background of Single-Phase Converters with an APPB
- Review of Existing Control Methods
- Feedback-Linearization-Based APD Control
- Lyapunov-Based APD Control^[18]
- Sensor Count Reduction Using Algebraic Observers
- Sensor Count Reduction with Simplified Algebraic Observers
- Conclusions

^[18] H. Yuan, S. Li, S. Tan, and S. Y. R. Hui, "Internal dynamics stabilization of single-phase power converters with Lyapunov-based automatic-power-decoupling control," *IEEE Trans. Power Electron.*, vol. 35, no. 2, pp. 2160–2169, Feb. 2020.

Limitation of FLB-APD Control

• Unable to ensure the stability of internal dynamics for some systems.

Objectives of This Part

- To explain the instability issue of using the FLB-APD control with an example circuit;
- To stabilize the internal dynamics using the LB-APD control.

LB-APD Control Sensor Reduction

Mathematical Modeling

Review

Example Circuit

- Topology: full-bridge rectifier + buck-type APPB.
- The APPB operates in the CCM^{*}.

State-Space Equations

Model:

$$\begin{cases} L_{\rm ac}\dot{i}_{\rm ac} = -v_{\rm dc}m_{\rm AB} + v_{\rm ac} \\ C_{\rm dc}\dot{v}_{\rm dc} = i_{\rm ac}m_{\rm AB} - i_{\rm b}d_{\rm C} - i_{\rm load} \\ L_{\rm b}\dot{i}_{\rm b} = v_{\rm dc}d_{\rm C} - v_{\rm b} \\ C_{\rm b}\dot{v}_{\rm b} = i_{\rm b} \end{cases}$$

• 4th-order system (different from the DCM case); nonlinear and coupled.

Instability Problem of the FLB-APD Controller

FLB-APD

Control

LB-APD

Control

FLB-APD controller

• Select control outputs: $\mathbf{y} = [i_{ac}, v_{dc}]^{T}$.

Review

• Control law:

$$\begin{cases} m_{\rm AB} = \left(v_{\rm ac} - L_{\rm ac} \dot{i}_{\rm ac}^{\rm R} - \alpha_1 L_{\rm ac} \left(i_{\rm ac}^{\rm R} - i_{\rm ac} \right) \right) / v_{\rm dc} \\ d_{\rm C} = \left(u_1 \dot{i}_{\rm ac} - \alpha_2 C_{\rm dc} \left(v_{\rm dc}^{\rm R} - v_{\rm dc} \right) - \dot{i}_{\rm load} \right) / \dot{i}_{\rm b} \end{cases}$$

• Error dynamics of **y**:

$$\dot{e}_i + \alpha_i e_i = 0$$
 where $e_i = y_i^{\rm R} - y_i$ (*i* = 1, 2)

Internal dynamics:

$$L_{b}\dot{i}_{b} = p_{b} / i_{b} - v_{b}$$

$$C_{b}\dot{v}_{b} = i_{b}$$
 where $p_{b} = v_{dc} \left(u_{1}\dot{i}_{ac} - \alpha_{2}C_{dc} (v_{dc}^{R} - v_{dc}) - \dot{i}_{load} \right)$

Simplified

observer

Sensor

Reduction

Conclusions

FLB-APD Review

LB-APD Control

Sensor Reduction

Conclusions

Instability Problem of the FLB-APD Controller

Control

FLB-APD controller

Internal dynamics of $i_{\rm h}$:

 $\dot{i}_{\rm b} = \frac{p_{\rm b}}{L_{\rm b}i_{\rm b}} - \frac{v_{\rm b}}{L_{\rm b}}$

- Phase plane of $i_{\rm h}$:
 - When $p_{\rm b} > 0$, $i_{\rm b}$ is locally stable (the blue trace);
 - When $p_{\rm b} < 0$, $i_{\rm b}$ is globally unstable (the red trace).

Summary:

The internal dynamics with the FLB-APD controller are unstable.

Simplified

observer

LB-APD Control

Sensor Reduction Simplified Conclusions

Lyapunov-Based (LB) APD Control

Modification of the FLB-APD Control Law

• Recall the system's model

 $\begin{cases} L_{ac}\dot{i}_{ac} = -v_{dc}m_{AB} + v_{ac} \\ C_{dc}\dot{v}_{dc} = i_{ac}m_{AB} - i_{b}d_{C} - i_{load} \\ L_{b}\dot{i}_{b} = v_{dc}d_{C} - v_{b} \\ C_{b}\dot{v}_{b} = i_{b} \end{cases}$

Two observations

1) To stabilize i_b , d_C must be modified.

2) Modification of $d_{\rm C}$ affects $v_{\rm dc}$, whereas $i_{\rm ac}$ is not affected.

Control scheme

1) Use m_{AB} in the FLB-APD controller.

2) Modify $d_{\rm C}$ in such a way that $v_{\rm dc}$ and $i_{\rm b}$ are simultaneously stable.

FLB-APD Control

LB-APD Control Sensor Reduction

LB-APD Control

Review

Stabilization of v_{dc} and i_b (i.e., $v_{dc} \rightarrow v_{dc}^{S}$, $i_b \rightarrow i_b^{S}$)

- Step 1: To use Lyapunov's method to ensure $v_{dc} \rightarrow v_{dc}^{R} (= v_{dc}^{S})$ and $i_{b} \rightarrow i_{b}^{R}$;
- Step 2: To ensure $i_b^R \rightarrow i_b^S$.

Step 1 - To Ensure $v_{dc} \rightarrow v_{dc}^{R} (= v_{dc}^{S})$ and $i_{b} \rightarrow i_{b}^{R}$

• Define a reference system:

$$L_{\rm b}\dot{i}_{\rm b}^{\rm R} = v_{\rm dc}d_{\rm C}^{\rm R} - v_{\rm b}.$$

• Design a Lyapunov candidate function: $V(e_2, e_3) = V_1(e_2) + V_2(e_3)$ where $V_1(e_2) = \frac{1}{2}C_{dc}e_2^2 = \frac{1}{2}C_{dc}(v_{dc}^R - v_{dc})^2$, $V_2(e_3) = \frac{1}{2}L_be_3^2 = \frac{1}{2}L_b(i_b^R - i_b)^2$.

 $V \rightarrow \infty$ as $||\mathbf{e}|| \rightarrow \infty$; V > 0 for all non-zero \mathbf{e} .

FLB-APD Control

LB-APD Control Sensor Reduction

LB-APD Control

- **Step 1** To Ensure $v_{dc} \rightarrow v_{dc}^{R} (= v_{dc}^{S})$ and $i_{b} \rightarrow i_{b}^{R}$
- Make the derivative of *V* negative definite:

Review

1) For $\dot{V}_2(e_3)$ By designing $d_{\rm C} = \frac{v_{\rm b} + \beta_1 e_3}{v_{\rm dc}}$, we have $\dot{V}_2(e_3) \approx -\beta_1 e_3^2 \leq 0$.

2) For $\dot{V_1}(e_2)$

By designing
$$i_{b}^{R} = \frac{v_{dc}}{v_{b}} (m_{AB}i_{ac} - i_{load} - \beta_{2}e_{2})$$
, we have $\dot{V}_{1}(e_{2}) = -\beta_{2}e_{2}^{2} \le 0$.

Thus, $\dot{V}(e_2, e_3) = \dot{V}_1(e_2) + \dot{V}_2(e_3) \le 0.$

• $v_{dc} \rightarrow v_{dc}^{R} (= v_{dc}^{S}) \text{ and } i_{b} \rightarrow i_{b}^{R}.$

FLB-APD Control

LB-APD Control

LB-APD Control

Step 2 - To ensure $i_b{}^R \rightarrow i_b{}^S$

Review

• As $i_{ac} \rightarrow i_{ac}^{S}$, $v_{dc} \rightarrow v_{dc}^{S}$, and $i_{b} \rightarrow i_{b}^{R}$, in the steady state,

$$i_{\rm b}^{\rm R} \rightarrow \frac{-V_{\rm AC}I_{\rm AC}\cos\left(2\omega t\right) - \omega L_{\rm ac}I_{\rm AC}^{2}\sin\left(2\omega t\right)}{2\sqrt{\frac{2E_{\rm b0}}{C_{\rm b}} - \frac{V_{\rm AC}I_{\rm AC}}{2\omega C_{\rm b}}}\sin\left(2\omega t\right) + \frac{L_{\rm ac}I_{\rm AC}^{2}}{2C_{\rm b}}\cos\left(2\omega t\right)} = i_{\rm b}^{\rm S}$$

• Therefore, $i_b^{R}(t) \rightarrow i_b^{S}(t)$.

With Step 1 and Step 2

• v_{dc} and i_b are stabilized simultaneously.

Stability of the Remaining State v_b

• Stable According to the principle of energy conservation.

FLB-APD

Control

LB-APD Control

Complete Control Law

Before modification (FLB-APD control):

Review

 $\begin{cases} m_{\rm AB} = (v_{\rm ac} - v_{\rm 1}) / v_{\rm dc} \\ d_{\rm C} = (u_{\rm 1} i_{\rm ac} - v_{\rm 2} - i_{\rm load}) / i_{\rm b} \end{cases}$

• After modification (LB-APD control):

$$\begin{cases} m_{\rm AB} = (v_{\rm ac} - v_1) / v_{\rm dc}. \quad (a) \\ d_{\rm C} = \beta_1 (u_1 i_{\rm ac} - v_2 - i_{\rm load}) / v_{\rm b} + (v_{\rm b} - \beta_1 i_{\rm b}) / v_{\rm dc}. \quad (b) \end{cases}$$

System Dynamics

Governing equations:

 $\dot{e}_i + \alpha_i e_i = 0$ where e_1, e_2, e_3 are the tracking errors of i_{ac}, v_{dc}, i_b , respectively.

• **Remark:** The desired simple dynamics of the FLB-APD control are retained.

LB-APD Control

Sensor Reduction Simplified observer

Conclusions

Experimental Verification

Review

Specifications

Parameters		Values
Rated power		300 W
Switching frequency		25 kHz
AC port	v _{ac}	220 V / 50 Hz
	$L_{\rm ac}$	7 mH
DC port	v _{dc}	400 V
	$C_{\rm dc}$	20 µF
APPB port	$C_{\rm b}$	50 µF
	L _b	1.87 mH

Sensor Reduction Simplified <u>observer</u>

Conclusions

Experimental Verification

Review

Steady-State Operation

AC port:

i) Unity power factor;
ii) *i*_{ac} has a low THD of 2.21%.

DC port:

 $v_{\rm dc}$ regulated at 400 V with a ripple of $\pm 1\%$.

APPB port:

 $v_{\rm b}$ has a large voltage swing of 70 V.

Simplified

observer

Experimental Verification

Review

Load-Disturbance Test

- **Experiment condition:** power change $0 \text{ W} \rightarrow 300 \text{ W}$ and $300 \text{ W} \rightarrow 0 \text{ W}$.
- *v*_{dc} remains tightly regulated.
- i_{ac} enters its steady-state within three line cycles.
- The imbalanced power is buffered by the APPB (see v_b).

Sensor Reduction Simplified

observer

Experimental Verification

Review

Output-Reference-Tracking Test

Experiment condition:

Reference of v_{dc} : 380 V \rightarrow 420 V and 420 V \rightarrow 380 V.

• v_{dc} has first-order responses with a settling time of 2 ms (designed $f_{BW2} = 400$ Hz).

- Background of Single-Phase Converters with an APPB
- Review of Existing Control Methods
- Feedback-Linearization-Based APD Control
- Lyapunov-Based APD Control
- Sensor Count Reduction Using Algebraic Observers^[19]
- Sensor Count Reduction with Simplified Algebraic Observers
- Conclusions

[19] H. Yuan, S. Li, S. -C. Tan, and S. Y. R. Hui, "Sensor count reduction for single-phase converters with an active power buffer using algebraic observers," *IEEE Trans. Ind. Electron.*, vol. 68, no. 11, pp. 10666–10676, Nov. 2021.

Sensor Reduction Simplified observer

High Sensor Count Problem

Review

Example Circuit

- Topology: full-bridge rectifier + buck-type APPB.
- The APPB operates in the CCM.

Mathematical Modeling

• State-space equations:

 $\begin{cases} C\dot{x} = J(x, u, v) \\ y = Kx \end{cases}$

where

$$\mathbf{C} = \begin{bmatrix} L_{ac} & 0 & 0 & 0 \\ 0 & C_{dc} & 0 & 0 \\ 0 & 0 & L_{b} & 0 \\ 0 & 0 & 0 & C_{b} \end{bmatrix}, \mathbf{K} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \mathbf{J}(\mathbf{x}, \mathbf{u}, \mathbf{v}) = \begin{bmatrix} v_{ac} - m_{AB}v_{dc} \\ m_{AB}i_{ac} - d_{C}i_{b} - i_{load} \\ d_{C}v_{dc} - v_{b} \\ i_{b} \end{bmatrix}$$

LB-APD Cont<u>rol</u> Sensor Reduction Simplified observer

Conclusions

High Sensor Count Problem

Review

Sensor Requirement

- For an *n*th-order system with *m* external disturbance sources, *n*+*m* sensors are generally required for full state feedback control.
- Example converter (4th-order) vs. conventional converter without the APPB (2nd-order)

measure runpose of sensing with ATTD with	ithout APPB
$i_{\rm ac}$ Grid current control $$	
i_{load} Load disturbance rejection suggested ($$) unit	necessary (×)
$i_{\rm b}$ APPB power control $$	×
$v_{\rm ac}$ Grid phase information $$	\checkmark
$v_{\rm dc}$ DC-link voltage regulation $$	\checkmark
$v_{\rm b}$ APPB energy control $$	×

The sensor count is high in the single-phase converter with an APPB.

High Sensor Count Problem

Problems of High Sensor Count

Review

- Compromise the system volume and cost.
- Undermine the system reliability.

Algebraic Estimation – A New Method^[20]

- Fast dynamics and no convergence issues^[21].
- A wide application range, including a wide class of nonlinear systems^[22].

Objective of This Part

To introduce the theory of employing algebraic observers to reduce the number of sensors.

^[20] M. Fliess, and H. Sira-Ramírez, "An algebraic framework for linear identification," in Proc. ESAIM, Control, Optim. Calc. Var., 2003, pp. 151–168.

^[21] A. Gensior, J. Weber, J. Rudolph, and H. Guldner, "Algebraic parameter identification and asymptotic estimation of the load of a boost converter," IEEE Trans. Ind. Electron., 55(9), pp. 3352–3360, Sept. 2008

^[22] H. Sira-Ramirez, C. Garcia-Rodriguez, J. Cortes-Romero, and A. Luviano-Juarez, Algebraic identification and estimation methods in feedback control systems, 1st ed., The Atrium Southern Gate, SXW, UK: John Wiley & Sons Ltd, pp. 71–144, 2014.

FLB-APD Control LB-APD Sensor Control Reduction Simplified Conclusions

Sensor Count Reduction Using Algebraic Observers

Principle of Algebraic Observers

Review

• System's model:

 $\begin{cases} \mathbf{C}\dot{\mathbf{x}} = \mathbf{J}(\mathbf{x}, \mathbf{u}, \mathbf{v}) \\ \mathbf{y} = \mathbf{K}\mathbf{x} \end{cases}$ (1) (**u** and **y** are known.)

- Decompose the right-hand side of input-output model: $\dot{\mathbf{y}} = \mathbf{K}\mathbf{C}^{-1}\mathbf{J}(\mathbf{x},\mathbf{u},\mathbf{v}) = \lambda(\mathbf{x},\mathbf{u},\mathbf{v}) + \mathbf{f}(\mathbf{y},\mathbf{u})$ (2) (**f** are known, while λ are to be estimated.)
- λ can be readily estimated from (2) as: $\lambda(\mathbf{x}, \mathbf{u}, \mathbf{v}) = \dot{\mathbf{y}} - \mathbf{f}(\mathbf{y}, \mathbf{u})$ (3)
- Remarks on (3):
 - 1) Open-loop estimation;
 - 2) The selection of λ is flexible;
 - 3) Using (3) is subject to noise problems.

FLB-APD Control

LB-APD Control Sensor

Reduction

Simplified Conclusions

Sensor Count Reduction Using Algebraic Observers

Smoothing the Noises

• Use a piecewise constant term $\hat{\lambda}$ to approximate λ . By applying Laplace transform to (3), we have

$$\frac{\hat{\boldsymbol{\lambda}}}{s} = s \mathbf{Y}(s) - \mathbf{y}(0) - \mathbf{F}(s) \qquad (4)$$

Review

• With manipulation of the i^{th} row of (4), we have

$$(-1)^{n_i} \cdot n_i! \cdot \frac{\hat{\lambda}_i}{s^{m_i + n_i + 1}} = \frac{n_i}{s^{m_i}} \frac{d^{n_i - 1}Y_i(s)}{ds^{n_i - 1}} + \frac{1}{s^{m_i - 1}} \frac{d^{n_i}Y_i(s)}{ds^{n_i}} - \frac{1}{s^{m_i}} \frac{d^{n_i}F_i(s)}{ds^{n_i}}.$$
 (5)

• In the time domain, we have:

$$\hat{\lambda}_{i}(t) = \begin{cases} \frac{n_{i}+1}{T_{i}^{n_{i}+1}} \bigg[T_{i}^{n_{i}} y_{i}(t) - \int_{t-T_{i}}^{t} (\sigma + T_{i}-t)^{n_{i}-1} (n_{i} y_{i}(\sigma) + (\sigma + T_{i}-t)f_{i}(\sigma)) d\sigma \bigg], & m_{i} = 1 \\ \frac{(m_{i}+n_{i})!}{n_{i}! \cdot (m_{i}-2)! \cdot T_{i}^{m_{i}+n_{i}}} \int_{t-T_{i}}^{t} (t-\sigma)^{m_{i}-2} (\sigma + T_{i}-t)^{n_{i}-1} \bigg[\bigg(\sigma + T_{i}-t - \frac{n_{i}(t-\sigma)}{m_{i}-1} \bigg) y_{i}(\sigma) - \frac{(\sigma + T_{i}-t)(t-\sigma)}{m_{i}-1} f_{i}(\sigma) \bigg] d\sigma, & m_{i} \ge 2 \end{cases}$$

$$(6)$$

No derivative terms, hence improved signal-to-noise ratio (SNR).

Review

LB-APD Control

Sensor Reduction

Conclusions

Simplified

observer

Sensor Count Reduction Using Algebraic Observers

Estimation Accuracy of the Algebraic Observers

- The error due to the piecewise constant approximation is analyzed.
- The Laplace transform of (3) without making the piecewise constant approximation is $\Lambda(s) = s\mathbf{Y}(s) - \mathbf{y}(0) - \mathbf{F}(s) \quad (7)$
- By comparing the equations with and w/o the approximation, we can relate $\hat{\lambda}$ to $\Lambda(s)$ as

$$\frac{1}{s^{m_i}} \frac{d^{n_i} \Lambda_i(s)}{ds^{n_i}} = (-1)^{n_i} \cdot n_i ! \cdot \frac{\hat{\lambda}_i}{s^{m_i + n_i + 1}} \qquad (8)$$

• In the time domain,

$$\hat{\lambda}_{i}(t) = \frac{(m_{i} + n_{i})!}{(m_{i} - 1)! \cdot n_{i}! \cdot T_{i}^{m_{i} + n_{i}}} \int_{t - T_{i}}^{t} (t - \sigma)^{m_{i} - 1} (T_{i} - t + \sigma)^{n_{i}} \lambda_{i}(\sigma) d\sigma \quad (9)$$

• The transfer function of the observer: $H_i(s) = \frac{\hat{\Lambda}_i(s)}{\Lambda_i(s)} = \kappa_i e^{-\tau_i s}$.

Sensor Count Reduction Using Algebraic Observers

LB-APD

Control

Sensor

Reduction

FLB-APD

Control

Estimation Accuracy of the Algebraic Observers

• Simplified results when *T_i* is small:

Review

$$\kappa_i \approx 1, \ \tau_i \approx \frac{m_i}{m_i + n_i + 1} T_i.$$
 (10)

Remarks:

1) $\hat{\lambda}_i$ has almost identical magnitude to that of λ_i .

- 2) The larger the m_i , the longer the time delay;
- 3) The larger the n_i , the shorter the time delay;
- 4) Time delay is proportional to T_i ;

5) $\tau_i < T_i$;

• The algebraic observer can be optimized by properly designing m_i , n_i , and T_i .

Simplified

observer

Conclusions

FLB-APD Control

LB-APD Sens Control Reduc

Sensor Reduction Simplified Conclusions

Illustration of Algebraic Observer Design

LB-APD Control as an Example

Review

• Control law:

$$\begin{cases} m_{AB} = \frac{1}{v_{dc}} \left(v_{ac} - L_{ac} \dot{i}_{ac}^{R} - \beta_{1} \left(i_{ac}^{R} - i_{ac} \right) \right) \\ d_{C} = \frac{\beta_{3}}{v_{b}} \left(m_{AB} \dot{i}_{ac} - \dot{i}_{load} - \beta_{2} \left(v_{dc}^{R} - v_{dc} \right) \right) + \frac{1}{v_{dc}} \left(v_{b} - \beta_{3} \dot{i}_{b} \right) \end{cases}$$

• System dynamics (decoupled and first-order): $\dot{e}_j + \alpha_j e_j = 0$

 e_1, e_2, e_3 are the tracking errors of i_{ac}, v_{dc}, i_b , respectively.

• Require 6 sensors: v_{ac} , v_{dc} , v_b , i_{ac} , i_b , i_{load} .

Review FLB-APD Control

LB-APD Control R

Sensor Reduction

Conclusions

Illustration of Algebraic Observer Design

Procedure of Designing Algebraic Observers

1) Obtain **u** from the control law and **y** from sensors.

2) Select λ and \mathbf{f} : $\lambda = \{ \overline{\mathbf{x}}_{y}, \mathbf{v} \}, \mathbf{f} = \mathbf{K}\mathbf{C}^{-1}\mathbf{J} - \lambda, \text{ e.g.},$

$$\boldsymbol{\lambda} = \begin{bmatrix} v_{\rm ac} \\ m_{\rm AB} i_{\rm ac} - i_{\rm load} \\ v_{\rm b} \end{bmatrix}, \ \mathbf{f} = \begin{bmatrix} -m_{\rm AB} v_{\rm dc} \\ -d_{\rm C} i_{\rm b} \\ -d_{\rm C} v_{\rm dc} \end{bmatrix}.$$

- 3) Estimate λ using the algebraic observers.
- 4) Finalize the control law

$$\begin{cases} m_{\rm AB} = \frac{1}{v_{\rm dc}} \left(\hat{\lambda}_{1} - L_{\rm ac} \dot{i}_{\rm ac}^{\rm R} - \beta_{1} \left(i_{\rm ac}^{\rm R} - i_{\rm ac} \right) \right) \\ d_{\rm C} = \frac{\beta_{3}}{\hat{\lambda}_{3}} \left(\hat{\lambda}_{2} - \beta_{2} \left(v_{\rm dc}^{\rm R} - v_{\rm dc} \right) \right) + \frac{1}{v_{\rm dc}} \left(\hat{\lambda}_{3} - \beta_{3} i_{\rm b} \right) \end{cases}$$

Require 3 sensors: v_{dc} , i_{ac} , i_{b} .

Overall control block diagram

Simplified

observer

LB-APD Control Sensor Reduction Simplified observer

Conclusions

Experimental Verification

Review

System Specifications

Parameters		Values
Rated power		300 W
Switching frequency		25 kHz
AC port	v _{ac}	220 V / 50 Hz
	$L_{\rm ac}$	7 mH
DC port	v _{dc}	400 V
	C _{dc}	20 µF
PPB port	C _b	50 µF
	L _b	1.87 mH

Sensor Reduction

Experimental Verification

Review

Performance of the Algebraic Observers

• λ are estimated with relatively small errors.

Sensor Reduction

Experimental Verification

Review

Performance of the Closed-Loop System

- **Experiment condition:** Steady-state operation (300 W).
- AC port:
 - 1) Unity power factor;
 - 2) i_{ac} has a low THD of 2.60%.
- DC port:

 $v_{\rm dc}$ regulated at 400 V with a ripple of $\pm 1\%$.

APPB port:

 $v_{\rm b}$ has a large voltage swing of 70 V.

Simplified

observer

Experimental Verification

Review

Performance of the Closed-Loop System

- **Experiment condition:** Load power change: $0 \text{ W} \rightarrow 300 \text{ W}$ and $300 \text{ W} \rightarrow 0 \text{ W}$.
- v_{dc} remains tightly regulated in the range of (400 ± 5) V.
- i_{ac} enters its steady-state within three line cycles.
- The algebraic-observer-based controller is robust against load disturbances.

Experimental Verification

Review

Performance of the Closed-Loop System

- Experiment condition Reference of v_{dc} : 380 V \rightarrow 420 V and 420 V \rightarrow 380 V.
- v_{dc} has first-order responses with a settling time of 3 ms (designed $f_{BW2} = 300$ Hz).
- The simple dynamics of the original controller are retained.

- Background of Single-Phase Converters with an APPB
- Review of Existing Control Methods
- Feedback-Linearization-Based APD Control
- Lyapunov-Based APD Control
- Sensor Count Reduction Using Algebraic Observers
- Sensor Count Reduction with Simplified Algebraic Observers^[23]
- Conclusions

[23] H. Yuan, S. Li, S. -C. Tan, and R. S. -Y. Hui, "Simplified algebraic estimation technique for sensor count reduction in single-phase converters with an active power buffer," *IEEE Trans Power Electron.*, vol. 36, no. 10, pp. 11444–11455, Oct. 2021.

Limitations of Algebraic-Observer-Based Sensor Reduction Method

- The design of algebraic observers is not straightforward.
- Real-time computation is non-trivial.

Objectives of This Part

- To present a simplified algebraic observer that has the following advantages:
 - 1) applicable to different topologies;
 - 2) intuitive design;
 - 3) extremely low computational complexity.
- To employ the simplified algebraic observers to reduce the number of sensors in single-phase converters with an APPB.

LB-APD Control Sensor Reduction

Simplified Algebraic Observers

Review

Computational Burden of Original Algebraic Observer

Discretized algebraic observer:

$$\hat{\lambda}_{i,z}[k] = \sum_{p=0}^{q_i} k_{xi}(p) y_{i,z}[k-q_i+p] + \sum_{p=1}^{q_i} k_{fi}(p) f_{i,z}[k-q_i+p]$$

- Remarks:
 - 1) $(2q_i + 1)$ multiplications and $2q_i$ additions are required;
 - 2) The design of $q_i > 10$ is typical^{[24]–[26]};

3) q_i should be minimized to reduce the computational burden.

4) When $q_i = 1$, the computational burden is most simplified. The observer reduces to $\lambda(\mathbf{x}, \mathbf{u}, \mathbf{v}) = \dot{\mathbf{y}} - \mathbf{f}(\mathbf{y}, \mathbf{u})$ which, however, is noise-sensitive.

^[24] A. Gensior, J. Weber, J. Rudolph, and H. Guldner, "Algebraic parameter identification and asymptotic estimation of the load of a boost converter," *IEEE Trans. Ind. Electron.*, 55(9), pp. 3352–3360, Sept. 2008

^[25] H. Sira-Ramirez, C. Garcia-Rodriguez, J. Cortes-Romero, and A. Luviano-Juarez, *Algebraic identification and estimation methods in feedback control systems*, 1st ed., The Atrium Southern Gate, SXW, UK: John Wiley & Sons Ltd, pp. 71–144, 2014.

^[26] H. Li, H. Zhang, Y. Zhou, and S. Zeng, "Cascaded proportional control with algebraic estimators for PFC AC/DC converters," *IEEE Trans. Power Electron.*, vol. 34, no. 12, pp. 12504–12512, Dec. 2019.

Sensor Reduction

r Simplified on observer

Conclusions

Simplified Algebraic Observers

Principle of Simplified Algebraic Observer

• Employ an LPF^{*} to smooth the noise:

Review

 $\hat{\lambda}' = \left(\left(\dot{\mathbf{y}} - \mathbf{f}(\mathbf{y}, \mathbf{u}) \right) * h_{\text{LPF}} \right)$

- Design of LPF:
 - 1) The cutoff frequency f_c should satisfy $f_{est} \ll f_c$ $\ll f_s$ for accurate estimation and sufficient noise suppression;
 - 2) $f_{\rm c} >> f_{\rm BW}$ for minimizing the influence of the observer on the controller.

The design of the observer is largely simplified.

Original Algebraic Observer

Simplified Algebraic Observer

LPF: low pass filter.

LB-APD Control Sensor Reduction Simplified observer

Conclusions

Comparison of the Original and Simplified Observers

Performance

Transfer function of the original observer:

 $H_{AO1}(s) = \kappa(\omega)e^{-\tau(\omega)s}$

where

 $\kappa(\omega) = 2\sqrt{(1 - \cos(\omega T))^2 + (\omega T - \sin(\omega T))^2} / (\omega^2 T^2)$ $\tau(\omega) = \arctan((\omega T - \sin(\omega T)) / (1 - \cos(\omega T))) / \omega$

Transfer function of the simplified observer

 $H_{\rm AO2}(s) = 2\pi f_{\rm c}/(s + 2\pi f_{\rm c})$

• Results:

- 1) Similar estimation performances for low-frequency signals;
- 2) Estimation accuracy drops for medium-frequency signals;
- 3) Similar noise-suppression capabilities.

Comparison of the Original and Simplified Observers

Computational Complexity

Review

• Original observer:

 $2q_i$ multiplication and $2q_i+1$ addition operators.

• Simplified observer:

$$\hat{\lambda}_{d}'[k] = m_{1}\hat{\lambda}_{d}'[k-1] + m_{2}\left(\mathbf{w}_{d}[k] + \mathbf{w}_{d}[k-1]\right), \quad \mathbf{w}_{d}[k] = \frac{1}{T_{s}}\left(\mathbf{y}_{d}[k] - \mathbf{y}_{d}[k-1]\right) - \mathbf{f}_{d}[k]$$

with $m_{1} = \frac{1 - \pi f_{c}T_{s}}{1 + \pi f_{c}T_{s}}, \quad m_{2} = \frac{\pi f_{c}T_{s}}{1 + \pi f_{c}T_{s}}$

3 multiplication and 4 addition operators.

- The simplified observer outperforms the original one with respect to:
 - 1) computational efficiency when $q_i > 1$.
 - 2) design simplicity due to decoupled noise-suppression performance and computational burden.

LB-APD Control Sensor Reduction Simplified observer

Conclusions

Experimental Verification

Review

System Specifications

Parameters		Values
Rated power		300 W
Switching frequency		25 kHz
AC port	v _{ac}	220 V / 50 Hz
	L _{ac}	7 mH
DC port	v _{dc}	400 V
	C _{dc}	25 μF
PPB port	C _b	50 µF
	L _b	1.87 mH

Sensor Reduction

Experimental Verification

Review

Comparison of the Performances

- λ are estimated with relatively small errors.
- The original observers and the simplified observers achieve similar estimation performances.

Simplified

observer

Experimental Verification

Review

Comparison of the Computational Complexity

• The simplified algebraic observers achieve 95% reduction in the computational time.

Sensor Reduction

Experimental Verification

Review

Performance of the Closed-Loop System

- **Experiment condition:** Steady-state operation (300 W).
- AC port:

Unity power factor without the v_{ac} measurement;
 i_{ac} has a low THD of 2.02%.

DC port:

 $v_{\rm dc}$ regulated at 400 V with a ripple of $\pm 1\%$.

APPB port:

 $v_{\rm b}$ has a large voltage swing of 70 V.

Sensor Reduction Simplified observer

Experimental Verification

Review

Performance of the Closed-Loop System

Experiment condition:

Load power change: 0 W \rightarrow 300 W and 300 W \rightarrow 0 W.

- v_{dc} remains tightly regulated in the range of (400 \pm 5) V.
- i_{ac} enters its steady-state within three line cycles.
- The simplified-observer-based controller is robust against load disturbances.

Sensor Reduction

Experimental Verification

Review

Performance of the Closed-Loop System

- Experiment condition Reference of v_{dc} : 380 V \rightarrow 420 V and 420 V \rightarrow 380 V.
- v_{dc} has first-order responses with a settling time of 2 ms.
- The simple dynamics of the original controller are retained.

- Background of Single-Phase Converters with an APPB
- Review of Existing Control Methods
- Feedback-Linearization-Based APD Control
- Lyapunov-Based APD Control
- Sensor Count Reduction Using Algebraic Observers
- Sensor Count Reduction with Simplified Algebraic Observers
- Conclusions

- Based on the understanding of the characteristics of single-phase converters with an APPB, a systematic controller design method is discussed. The FLB-APD control is applicable when internal dynamics are stable, while the LB-APD control can be adopted when internal dynamics are unstable.
- Global stability, fast dynamics, and good robustness against disturbances are achieved with the FLB-APD and LB-APD control.
- To tackle the high-sensor-count problem, a sensor-reduction method based on algebraic observers is presented, which halves the number of sensors and retains the advantages of the original controller.
- A simplified algebraic observer is introduced, which reduces the computational time by 95% while achieving similar performance to that of the original algebraic observer.

Thanks for your attention!